Note on Impossible Differential Attacks

Patrick Derbez

IRISA / University of Rennes 1

March 22, 2016
Outline

1 Introduction
 - Impossible Differential Attacks
 - Early Abort Technique

2 Toy Examples
 - Description of Toy Cipher
 - Complexity of Impossible Differential Attacks

3 Application to TWINE
 - Description of TWINE-128
 - Impossible Attack against 25-round TWINE-128
 - Computing Real Time Complexity

4 Conclusion
Outline for section 1

1. Introduction
 - Impossible Differential Attacks
 - Early Abort Technique

2. Toy Examples
 - Description of Toy Cipher
 - Complexity of Impossible Differential Attacks

3. Application to TWINE
 - Description of TWINE-128
 - Impossible Attack against 25-round TWINE-128
 - Computing Real Time Complexity

4. Conclusion
Impossible Differential Cryptanalysis

Setup

- **Top** \(P[\Delta_{in} \rightarrow \Delta_X] = 2^{-c_{in}} \)
- **Middle** \(P[\Delta_X \rightarrow \Delta_Y] = 0 \)
- **Bottom** \(P[\Delta_{out} \rightarrow \Delta_Y] = 2^{-c_{out}} \)

Main idea

If a candidate key partially encrypts/decrypts a given pair to an impossible differential then this key is wrong.
Let k_1, k_2, \ldots, k_b be key bits $k_{in} \cup k_{out}$ and σ a permutation.

Early abort

- Discard pairs which cannot follow the impossible differential
- Guess $k_{\sigma(1)}$
- Partially encrypt/decrypt pairs and discard pairs which cannot follow the impossible differential
- Guess $k_{\sigma(2)}$
- \vdots
- Guess $k_{\sigma(b)}$
- Partially encrypt/decrypt pairs and discard pairs which cannot follow the impossible differential
- If all pairs have been discarded then perform an exhaustive search over remaining key bits.
Early Abort Technique Algorithm

Early abort without final exhaustive search - complexity

\[T_\sigma \geq \sum_{1 \leq i \leq b} 2^{|k_{\sigma(1)} \cup \ldots \cup k_{\sigma(i)}|} - \sum_{1 \leq j < i} r_{i,j} \cdot N \cdot C_E' \]

- \(N \): number of pairs
- \(r_{i,j} \): proportion of pairs discarded at step \(i \)
- \(C_E' \): ratio of the cost of partial encryption to full encryption
Early Abort Technique Algorithm

Early abort without final exhaustive search - complexity

\[T_\sigma \geq \sum_{1 \leq i \leq b} 2^{\left| k_{\sigma(1)} \cup \ldots \cup k_{\sigma(i)} \right|} - \sum_{1 \leq j < i} r_j^\sigma \cdot N \cdot C'_E \]

- \(N \): number of pairs
- \(r_i^\sigma \): proportion of pairs discarded at step \(i \)
- \(C'_E \): ratio of the cost of partial encryption to full encryption

Boura et al.'s assumption (ASIACRYPT 2014):

\[\min_{\sigma} T_\sigma \approx \left(1 + 2^{\left| k_{in} \cup k_{out} \right|} - c_{in} - c_{out} \right) \cdot N \cdot C'_E \]
Outline for section 2

1 Introduction
 - Impossible Differential Attacks
 - Early Abort Technique

2 Toy Examples
 - Description of Toy Cipher
 - Complexity of Impossible Differential Attacks

3 Application to TWINE
 - Description of TWINE-128
 - Impossible Attack against 25-round TWINE-128
 - Computing Real Time Complexity

4 Conclusion
Toy Cipher

- First round based on AES

$\Delta_{in} \xrightarrow{p = 2^{-24}} \Delta_X \xrightarrow{\not\rightarrow} \Delta_Y = \Delta_{out}$

How key schedule relations do affect time complexity?
Independent Subkeys

- k_0, k_5, k_{10} and k_{15} independent
- Boura et al's formula:

$$ (1 + 2^{\lvert k_{\text{in}} \rvert - c_{\text{in}}}) \cdot N \cdot C'_E = (1 + 2^{32-24}) \cdot N \cdot 4S_E^{-1} \approx 2^{10} \cdot N \cdot S_E^{-1} $$
Independent Subkeys

\[\Delta_{in} \quad p = 2^{-24} \quad \Delta_X \quad \Delta_Y = \Delta_{out} \]

Early abort technique:

- Guess \(k_0 \) and keep only pairs for which transitions \(\Delta x_5 \to \Delta y_5, \Delta x_{10} \to \Delta y_{10} \) and \(\Delta x_{15} \to \Delta y_{15} \) are possible
- Guess \(k_5 \) and keep only pairs satisfying \(\Delta x_5 \to \Delta y_5 \)
- Guess \(k_{10} \) and keep only pairs satisfying \(\Delta x_{10} \to \Delta y_{10} \)
- Guess \(k_{15} \) and keep only pairs satisfying \(\Delta x_{15} \to \Delta y_{15} \)

Real complexity:

\[
(2^8 + 2^8 + 8 - 3 + 2^8 + 8 + 8 - 3 - 7 + 2^8 + 8 + 8 + 8 - 3 - 7 - 7) \cdot N \cdot S_E^{-1} \approx 2^{15.8} \cdot N \cdot S_E^{-1}
\]
Independent Subkeys

- Δ_{in}
- $p = 2^{-24}$
- $\Delta x \rightarrow \Delta y = \Delta_{out}$

$\begin{array}{cccccc}
0 & 4 & 8 & 12 \\
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15 \\
\end{array}$

- k_0, k_5, k_{10} and k_{15} independent
- **Boura et al's formula:**

\[(1 + 2^{|k_{in}| - c_{in}}) \cdot N \cdot C'_E = (1 + 2^{32-24}) \cdot N \cdot 4S_E^{-1} \approx 2^{10} \cdot N \cdot S_E^{-1} \]

- **Real complexity:**

\[(2^8 + 2^{8+8-3} + 2^{8+8+8-3-7} + 2^{8+8+8+8-3-7-7}) \cdot N \cdot S_E^{-1} \approx 2^{15.8} \cdot N \cdot S_E^{-1} \]
Related Subkeys I

- one key schedule equation: $k_0 = k_5$
- Boura et al's formula:
 \[
 (1 + 2^{|k_{in}| - c_{in}}) \cdot N \cdot C'_E = (1 + 2^{24-24}) \cdot N \cdot 4S_E^{-1} = 2^3 \cdot N \cdot S_E^{-1}
 \]
- Real complexity:
 \[
 (2^8 + 2^{8-3} + 2^{8+8-3-7} + 2^{8+8+8-3-7-7}) \cdot N \cdot S_E^{-1} \approx 2^{8.9} \cdot N \cdot S_E^{-1}
 \]
Related Subkeys II

- one key schedule equation: $k_0 \oplus k_5 \oplus k_{10} \oplus k_{15} = 0$
- Boura et al’s formula:
 $$\left(1 + 2^{\left|k_{in}\right|-c_{in}}\right) \cdot NC'_E = (1 + 2^{24-24}) \cdot N \cdot 4S_E^{-1} = 2^3 \cdot N \cdot S_E^{-1}$$
- Real complexity:
 $$\left(2^8 + 2^8 + 8 - 3 + 2^8 + 8 - 3 - 7 + 2^8 + 8 - 3 - 7 - 7\right) \cdot N \cdot S_E^{-1} \approx 2^{14.6} \cdot N \cdot S_E^{-1}$$
Outline for section 3

1. Introduction
 - Impossible Differential Attacks
 - Early Abort Technique

2. Toy Examples
 - Description of Toy Cipher
 - Complexity of Impossible Differential Attacks

3. Application to TWINE
 - Description of TWINE-128
 - Impossible Attack against 25-round TWINE-128
 - Computing Real Time Complexity

4. Conclusion
Introducing TWINE

- Nibble-oriented Feistel
- state size: 64 bits (16 4-bit branches)
- 2 key sizes: 64 and 128 bits
Biryukov et al’s attack (FSE 2015)

$P \xrightarrow{\quad} x_1 \quad x_2 \quad x_3 \quad x_4 \xrightarrow{\quad} x_{17} \quad x_{18} \quad x_{19} \quad x_{20} \quad x_{21} \quad x_{22} \quad x_{23} \quad x_{24} \xrightarrow{\quad} C$

$p = 2^{-16}$

$p = 2^{-60}$

- 52 subkey nibbles involved but only 2^{124} possible values
Methodology

- 52 subkey nibbles involved $\rightarrow 52! \approx 2^{225}$ orders for the early abort technique
Methodology

- 52 subkey nibbles involved $\rightarrow 52! \approx 2^{225}$ orders for the early abort technique

If between two guesses no pairs are discarded then the order in which they are guessed does not matter.

When do pairs are discarded?
Discarding pairs

Proportion of pairs:
- $\Delta x, \Delta y$: probability of transition $\Delta x \rightarrow \Delta y \approx 2^{-1}$
- $\Delta x, \Delta y, x \oplus k$: 2^{-4}
Exhausting Early Abort Technique

- **Biryukov et al.’s attack:**
 - 19 tuples \((x, y, z)\)
 \[\rightarrow 19 \text{ tuples } (\Delta x, \Delta y) + 19 \text{ tuples } (\Delta x, \Delta y, x \oplus k)\]
 - Easy to determine corresponding subkey nibbles
 - But brute force still infeasible:

\[
(19 + 19)! = 38! \approx 2^{148}
\]
Exhausting Early Abort Technique

- Biryukov et al’s attack:
 - 19 tuples \((x, y, z)\)
 - \(\rightarrow\) 19 tuples \((\Delta x, \Delta y)\) + 19 tuples \((\Delta x, \Delta y, x \oplus k)\)
 - Easy to determine corresponding subkey nibbles
 - But brute force still infeasible:
 \[
 (19 + 19)! = 38! \approx 2^{148}
 \]

- Search:
 - \(K_i \subseteq K_j \Rightarrow\) guess \(K_i\) before \(K_j\)
 - Generic formula:
 \[
 \text{Best}(K_1, \ldots) = \min_i (\text{Best}(K_1, \ldots, K_{i-1}, K_{i+1}, \ldots) + 2^{\left|K_1 \cup \ldots \right| - \sum_{j \neq i} r(K_j)})
 \]
Exhausting Early Abort Technique

- **Biryukov et al’s attack:**
 - 19 tuples \((x, y, z)\)
 \(\rightarrow\) 19 tuples \((\Delta x, \Delta y)\) + 19 tuples \((\Delta x, \Delta y, x \oplus k)\)
 - Easy to determine corresponding subkey nibbles
 - But brute force still infeasible:
 \[(19 + 19)! = 38! \approx 2^{148}\]

- **Search:**
 - \(K_i \subseteq K_j \Rightarrow \text{guess } K_i \text{ before } K_j\)
 - Generic formula:
 \[
 \text{Best}(K_1, \ldots) = \min_i (\text{Best}(K_1, \ldots, K_{i-1}, K_{i+1}, \ldots) + 2^{|K_1 \cup \ldots| - \sum_{j \neq i} r(K_j)})
 \]

How to compute \(2^{|K_1 \cup \ldots|}\) **?**
TWINE-128 Key Schedule

Shape of key schedule equations:

\[\bigoplus \alpha_i k_i \oplus \beta_i S(k_i) = \gamma, \]

where \(\alpha_i \)'s, \(\beta_i \)'s and \(\gamma \) are constant
TWINE-128 Key Schedule

Shape of key schedule equations:

\[\bigoplus \alpha_i k_i \oplus \beta_i S(k_i) = \gamma, \]

where \(\alpha_i \)'s, \(\beta_i \)'s and \(\gamma \) are constant

- Use Derbez et al.'s tool (FSE 2013)
Result

- Computation of real complexity: 1h on personal computer

- **Result:**
 \[
 \min_{\sigma} T_{\sigma} \geq 2^{54} \cdot N_\alpha \cdot C_{E'}
 \]

- Time complexity of whole attack higher than:
 \[
 C_{N_\alpha} + \alpha \cdot 2^{127.6} + 2^{128-\alpha}
 \]

- Higher than \(2^{128}\) for all \(\alpha > 0\).
Outline for section 4

1. Introduction
 - Impossible Differential Attacks
 - Early Abort Technique

2. Toy Examples
 - Description of Toy Cipher
 - Complexity of Impossible Differential Attacks

3. Application to TWINE
 - Description of TWINE-128
 - Impossible Attack against 25-round TWINE-128
 - Computing Real Time Complexity

4. Conclusion
Conclusion

In this paper:

▶ Boura et al’s formula too optimistic
 ▶ reaching it is, if not impossible, very tricky

▶ Construction of simple counter-examples:
 → deviation up to a factor $2^{11.6}$

▶ Algorithm computing real complexity for TWINE
 ▶ complexity of Biryukov et al’s attack higher than 2^{128}
 ▶ applicable to more ciphers

Open problems:

▶ Improve the formula

▶ Find an example with time complexity smaller than expected
Thank you for your attention!